
‘44 %..

a“

Fast Time and Space Parallel Algorithms for Solution

of Parabolic Partial Differential Equations

Amir Fijany

Jet propulsion Laboratory, California Institute of Technology

Pasadena, CA 91109

Abstract- ing this paper, fast time- and space-parallel algorithms for solution

of linear parabolic PDEs are developed. It is shown that the seemingly

strictly serial iterations of the time-stepping procedure for solution of the

problem can be completely decoupled. This decoupling is achieved by using a

transformation based on the eigenvalue-eigenvector decompositions of the

matrices involved in the iterations and results in time-parallel algorithms

that enable the solution for all the time steps to be computed in parallel.

The time-parallel algorithms also allow a massively parallel solution of the

problem through exploitation of parallelism in space. With a sufficient number

of processors, parallelism in both time and space can be fully exploited,

leading to a computational complexity of max(O(Log N),O(Log M)) + O(Log N)
!.

a both time-and space-parallel solution of the problem where M and N stand

the number of time steps and the size of grid. However, for many practical

cases, the complexity of time-parallel algorithms is independent of M. The

for

for

time-parallel algorithms have a highly decoupled structure and hence can be

efficiently implemented on the emerging massively parallel MIMD architectures

with a minimum communication and synchronization overhead.

Index Terms- Crank-Nicholson method, MIMD parallel architectures,

PDEs, parallel algorithms, time- and space-parallel computation.

parabolic

1

“4 \

,1. Introduction.

The solution of parabolic PDEs arises in many scientific applications.

Therefore, the development of fast and accurate algorithms for the problem has

been extensively studied in the literature. The advent of massively parallel

architectures offers a new opportunity for a faster solution of the problem.

However, in order to fully exploit the computing power of these new architec-

tures, the existing algorithms must be reexamined based on their efficiency

for parallel implementation and eventually new algorithms must be developed

that, from the onset, take a greater advantage of the massive

In this paper,

domain Q (which can

(1) XJ.N(J
at

we consider the linear parabolic equation

be one-, two-, or three-dimensional) with

in Q and T>t>O

parallelism.

on a bounded

boundary Q’ as

with boundary and initial conditions as

U = g on !2’ and T>t>O

U = f inQandt=O

where V2 is the Laplace operator and a is constant. We first consider the

problem with Dirichlet boundary condition. The extension of the results to

Neumann boundary condition is discussed later. Also, for two- and three-

dimensional cases, $2 is assumed to be regular, i.e., a square or a cube.

The discretization of Eq. (1) by superimposing a uniform grid on Q and

using the usual finite-different schemes leads to a family of iterative

methods given by

(2) (1 + 2@MJU(i)= (I - 26(1 - T)AtJU(l-i) = 1, Mi

where I is the unit matrix of appropriate size, ML is the matrix arising from

the discretization of Laplace operator, 6 is constant, At = T is the time step

size, and M = T/T.

The three methods for the problem are characterized by the parameter v as

‘7 = O: Explicit method and Eq. (2) becomes

(3) u (1) = (I - 2M(L)U(1-1) i 1,M=

2

‘4 \ .

,, y = 1: Implicit method and Eq. (2) becomes

(4) (I + 2&tt)U(i) = U(i-l)L i 1, ... ,M=

‘1 = 1/2: Crank-Nicholson (C-N) method and Eq. (2) becomes

(5) (1.+ M)U(’) = (I - 6M)Ufl-l)L L i 1,M=

The explicit method is conditionally stable while both the implicit and C-N

methods are unconditionally stable. The C-N method is usually preferred since

it is second-order accurate in time while the implicit method is only first-

order accurate. This better accuracy in time is achieved at a cost of an

additional matrix-vector multiplication. It seems, however, less noticed that

the matrix-vector multiplication can be avoided by rewriting Eq. (5) as

(I + ~fl)((J(i) + U(i-l)) = Zu(i-l)
L i 1,M=

which, by defining W(i) = U(i) + U(i-l), allows to express the C-N method in a

modified form as

(6) (IZ2 + (&2)AtL)w(i) =U(i-l)

(7)
u(i) = w(i) - U(i-l)

For both serial and space-parallel (see below) computation, Eqs. (6)-(7)

are more efficient than Eq, (5) since the matrix-vector multiplication is

replaced by a simple vector addition. However, for our approach Eq. (5) iS

more suitable since not only it does not increase the computation cost but

also it can be better parallelized.

The iterations in Eqs. (3)-(5) represent the time-stepping, or marching

in time, procedure for solution of the problem, From a computational point of

view, the problem is both time (i.e., number of time steps, M) and space (i.e,

size of grid, N) dependent. Throughout this paper, the term space-parallel is

used for the, algorithms that exploit parallelism only in each solution of

Eqs. (3)-(5) while the term time-parallel refers to those algorithms that

(i)exploit full or partial parallelism in computation of all vectors U ,

i =1,2, ..,, M. A both time- and space-parallel algorithm is then the one

that exploits full or partial parallelism in computation of all vectors U(i)

3

.,
f ‘k

. as well as parallelism in computation of each vector.

The coefficient matrices in Eqs. (4)-(6) have a symmetric, positive-

definite, and sparse structure. This allows the use of the rather generic

iterative methods-such as SOR, conjugate gradient, etc. [11, for solution of

the linear systems in Eqs. (4)-(6). These matrices have additional structures

similar to those arising in solution of Poisson Equation. In this sdnse,

Eqs. (4)-(6) represent a sequence of Poisson Equations. Therefore, the so

called fast Poisson Solvers can be used for the direct solution of the linear

systems in Eqs. (4)-(6) with a greater computational efficiency over the

iterative methods [2]. The application of serial and parallel fast Poisson

Solvers are discussed in more detail in Sections II-IV.

The fact that the application of the implicit and C-N

the solution of a linear system at each time step has been

limiting factor for efficient parallel computation [3]. To

methods requires

considered as a

overcome this

limitation and increase the efficiency for parallel computation, two different

approaches have been proposed. Gallopoulos and Saad [4] and Serbin [5] have

developed implicit methods wherein partial fraction decomposition technique is

employed to better parallelize the linear system solution. The explicit

method, while limited in its range of stability, is highly efficient for

parallel and vector computation since it only involves a sequence of matrix-

vector multiplications. Motivated by this greater efficiency for parallel and

vector computation, Rodrigue [6], Rodrigue and Wolitzer [7], and Evans [8]

have developed new explicit methods with greater stability regions. However,

these approaches result in algorithms that can be classified as space-parallel

since they attempt to parallelize the computation of each iteration while the

overall computation in time remains strictly serial.

In fact, it seems that the time-stepping procedure in Eqs. (3)-(5)

implies a strict sequentiality of the computation in time. This has motivated

the development of new approaches to increase parallelism in time. Waveform

4

f T .,’

relaxation [9] and windowed relaxation [101 methods have been developed

increase time-parallelism in the computation while using the iterative

techniques such as Jacobi, Gaus-Seidel, and SOR for the linear system

solution, Womble -[11] has proposed the parallel time-stepping method in

while the exact solution for one time step is’ computed by a group of

to

which,

processors, other processors can compute a good initial guess for the next

time steps based on partial solutions of previous time steps. Time-parallel

algorithms based on the multigrid method have been proposed by Hacbusch [12]

and Horton and Knirsch [131 wherein parallelism in time is achieved by

performing the computation for several time steps simultaneously. However,

these time-parallel algorithms achieve a rather limited parallelism in time.

In fact, Womble [111 supports the assessment of [141 wherein simultaneous

solution for all the time steps is not considered practical.

In this paper we develop time-parallel algorithms that, for the class of

problems defined by Eq. (l), allow the iterations in Eqs. (3)-(5) to be

completely decoupled and performed in parallel [15]. The main emphasis,

however, is on the time-parallel computation of the C-N method. The decoupling

is achieved by transforming Eqs. (3)-(5) into a diagonal form. This

transformation, that is based on the eigenvalue-eigenvector decomposition of

the matrices involved in the equations, reduces Eqs. (3)-(5) to a set of First

Order Homogeneous Linear Recurrences (FOHLR) which then allow the solution for

all the time-steps to be computed in parallel. Our results clearly prove that,

unlike the general assumption, the iterations in Eq. (3)-(5) can be more

efficiently parallelized in time than in space. As a result, even with a

limited number of processors, it is more efficient to exploit parallelism in

time than in space.

It should be pointed out that, for most cases considered in this paper,

the eigenvalue-eigenvector decomposition of these matrices have been well

5

, ,

known, However, such a knowledge has been usually used for analyzing the

stability of the different methods (see for example [16]) rather than deriving

algorithms for solution of problem. This can be explained by the fact that, at

first glance, it seems that the use of eigenvalue-eigenvector decomposition

results in inefficient algorithms for serial computation. However, while this

is true for the one- and two-dimensional cases, the resulting algorithms not

only are highly efficient for parallel solution of problem with any dimension

but also, for the three-dimensional case, seem to be the most efficient even

for serial computation,

This paper is organized as follows. In Sections II-IV the time-parallel

algorithms for one-, two-, and three-dimensional problems are developed. The

extension to Neumann boundary condition and higher-order finite-difference

schemes are presented in Section V. The practical implementation of the time-

parallel algorithms is discussed in Section VI. Finally some concluding

remarks are made in Section VII.

II. One-Dimensional Parabolic Equation

A. Problem Statement and Crank-Nicholson Method

For one-dimensional case, we consider Q to be of unit length (i.e. , a rod

of length 1). The parabolic equation is given as

ty= ~2 a%
XC!2 and T>t>O

at ax2

with boundary and initial conditions as

U(t,x) = g (x) XCQ’ and T>t>O

U(o,x) = f(x) Xci-1

Superimposing a uniform grid of size Ax = h and using the 3-point central

difference scheme, the C-N method is then given by

(8) (IN + 8M)U(i) = (I - ~~)U(i-i)L1 N L1 i 1,M=

where h = l/(N+l), 6 = a2~/2h2, IN is the NxN unit matrix, and JULICRNXN is a

6

*

. tridiagonal matrix as At~l = Tridiag[-1, 2, -11.

As stated before, for both serial and space-parallel computation, the

modified C-N method given by Eqs. (6)-(7) is more efficient than the direct

solution of Eq. (%). Further computational efficiency in both serial and

parallel solution of Eq. (6) can be achieved by exploiting the special

Toeplitz structure of the coefficient matrix (see for example [17,181).

In any case, the cost of serial computation of Eqs. (6)-(7) is of O(N).

This leads to a total serial computational complexity of O(MN) for the

problem, With O(N) processors, the solution of the tridiagonal system in

Eq. (6) can be obtained in O(Log N) steps by using, for example, the parallel

algorithms in [18,191 while the computation of Eq. (7) can be performed in

O(1) step. This leads to a parallel computational complexity of O(MLog N)

which indicates that

a) The computation is fully parallelized in space, i.e. , the computation of

each step is fully parallelized, wherein the time lower bound of O(Log N) is

achieved, and

b

B

The computation is strictly serial in time.

Time-Parallel Algorithm

Following theorem is used in the derivation of the time-parallel algorithm.

Theorem 1. The eigenvalue-elgenvector decomposition of a symmetric trldiagonal

Toeplitz matrix T = Tridiag[b, a, bl.cRNxN is given as

(9) T = QAQ

where the matrix Q ~ ROW {Q(i)}cIRNxN is the set of normalized eigenvectors of

matrix T with Q(l) = (2/N+l)l’2Col{sin(ijn/N+l)}cRN, iandj=l, 2, N,

being the ith eigenvector, The diagonal matrix A = Diag{Ai}@RNxN is the set of

eigenvalues of matrix T with A, = a + 2bcos(in/N+l) being the ith eigenvalue.

Proof. See for example [20, p.3491. o

Note that, Q is a symmetric ort,honormal matrix, i.e., Q = Qt = Q-i. From the

7

above theorem, the eigenvalue-eigenvector decomposition of AL1 Is given as

(lo) AL1 = QAIQ

Awhere A = Diag{A1i}cU?NxN, i = 1, N, with
1

(11) A2= - 2cos(in/N+l)11

Replacing Eq. (10) into Eq. (8), we get

(12) Q(IN + 6Ai)QU(i) = Q(I - 6A)QU(’-l)1 i =1,2,M

Let ~(’) ~ QU(’) and D, ~ (IN + 3A1)-’(I~ - 6AI). Since Q is an orthonormal

and hence a nonsingular matrix, it then follows that

(13) ~(i) = Dl~(l-l) i =1, 2,M

which represents a FOHLR. However, Eq. (13) implies that

(14) ~(l) = @o(o) i =1, 2,M

The diagonal matrix DI is a function of problem size and time and space

discretization parameters. If a same problem is solved many times for

different boundary and/or initial conditions, then all the matrices (D1)l can

be precomputed (see also Sec. VI), In this case, starting with ~(o) all u~ can

be computed in parallel from Eq. (14). Assuming that all matrices [Dl)i are

precomputed, the time-parallel algorithm is then given as

Step I: -(0)u = QU(0)

Step II: -=(1)u = (Dl)+j(o) i =1,2,M

Step 111: u (1)
= Q~(l) i =1,2,M

C. Comparison of Serial, Space-Parallel, and Time-Parallel Algorithms

The computational structure of the time-parallel algorithm is shown in

Fig. la. As can be seen, the computations in Steps II-III are completely

decoupled and can be performed in parallel for all i = 1, 2, M, In this

case, the computational complexity of time-parallel algorithm, unlike that of

serial and space-parallel algorithms, is independent of M. That is, the O(M)

dependency is reduced to O(l), However, as discussed below, care should be

taken in analyzing the performance of the time-parallel algorithm,

8

———

<

The matrix Q is the one-dimensional Discrete Sine Transform (DST) operator.

Therefore, the multiplication of any vector by the matrix Q in Steps I and 111

is tantamount to performing a one-dimensional DST which, by using the fast

techniques, can be computed in O(NLog N) [211. It follows that the complexity

of serial implementation of the time-parallel algorithm is of O(MNLog N), This

implies that the time-parallel algorithm is not efficient for serial

computation. In fact, the algorithm is asymptotically inconsistent in the

sense defined by Ortega and Voigt [3] since the complexity of its serial

implementation, i.e,, O(MNLog N), is greater than that of the best serial

algorithm for the problem, i.e., O(MN).

Due to this asymptotic inconsistency, the performance of the time-parallel

algorithm strongly depends on the degree to which parallelism is exploited in

its computation. Using M processors, that corresponds to a coarse grain

parallel implementation and is designated as M-parallel implementation, the

computational complexity of the time-parallel algorithm 1s of O(NLog N). If

M>Log N (which is likely to be the case for many practical applications), then

the time-parallel algorithm achieves a speedup of O(M/Log N) over the best

serial algorithm. However, only for M>N the time-parallel algorithm becomes

faster than the space-parallel algorithm with a relative speedup of O(M/N).

This implies that for problems with small M the time parallel-algorithm may

become less efficient than the best space-parallel algorithm.

Using O(MN) processors, that corresponds to a two-level or a both time- and

space-parallel implementation, the DSTS in Steps I and III can be performed in

O(Log N) [181

computational

over the best

and the computation in Step II in O(1) which leads to an overall

complexity of O(Log N). This represents a speedup of O(MN/Log N)

serial algorithm and a relative speedup of O(M) over the best

space-parallel algorithm. The latter performance is of particular significance

since it indicates that by increasing the number of processors from O(N) to

O(MN) a linear relative speedup of O(M) can be achieved.

9

111. Two-Dimensional Parabolic Equation

A. Statement of Problem and Crank-Nicholson Method

For the two-dimensional case, we consider Cl to

parabolic equation is given as

fl=a2@ +a%,—— x,yc~ and T>t>O
at ax 2 ay2

with boundary and initial conditions as

U(t,x,y) = g(x,y) x, yen’ and T>t>O

U(o,x,y) = f(x,y) x, yen

Superimposing a uniform grid on !2 (Ax = Ay = h) and

finite difference scheme, the C-N method is given by

be a unit square, The

(15) (I ~2 + ML2)IP = (IN2 - M2)u(i-1)

using the usual 5-point

i =1, 2,)’

where, as before, h = l/(N+l) and 3 = a2~/2h2, I ~2 is the N2xN2 unit matrix,

2 2
A = Tridiag[-IN, A, -IN]CRNXNL2 is the block tridiagonal matrix arising from

the discretization of two-dimensional Laplace operator, and AcRNXN is a

tridiagonal matrix as A = Tridiag[-1, 4, -l].

Again, the modified C-N method given by Eqs. (6)-(7) is more efficien

than the direct solution of Eq. (15) since the multiplication of a block

tridiagonal matrix by a vector is replaced by a vector addition. For this

case, the coefficient matrix in Eq. (6) has a similar structure to M whichL2

is the matrix arising in solution of two-dimensional Poisson Equation. Thus,

the fast Poisson Solvers, i.e., Bouneman’s Variant of Cyclic Reduction (CR)

algorithm [22,23], Matrix Decomposition (MD) algorithm [23,24], and Fourier

Analysis (FA) algorithm [251, with a serial complexity of 0(N2Log N) can be

used for direct solution of Eq. (6). This leads to a complexity of 0(N2Log N)

for each solution of Eq, (6) and an overall complexity of 0(MN2Log N) for the

serial computation of problem.

For space-parallel computation, both the MD and FA algorithms are more

efficient than the CR algorithm, Sweet [26] and Gallopoulos and Saad [27] have

10

, shown that parallel computation of CR algorithm can be performed in 0(Log2N)

steps with 0(N2) processors. However, with O(N2) processors, parallel

computation of both MD and FA algorithms can be performed in O(Log N) steps

[18,281. Therefore, by using the parallel variant of either MD or FA

algorithms with 0(N2) processors, each solution of Eq. (6) can be computed in

O(Log N) while the vector addition in Eq, (7) can be performed in 0(1). This

leads to an overall computational complexity of O(MLog N) for space-parallel

solution of the problem which indicates that the computation is fully

parallelized in space but is strictly serial in time.

B. Time-Parallel Algorithm

The time-parallel algorithm for two-dimensional case is based on

derivation of the eigenvalue-eigenvector decomposition of matrix flL2.

end, let us first consider a matrix Q ~ Diag[Q, Q, Q, Q] CRN2XN2.

the

TO this

By

definition, it follows that Q is a symmetric orthonormal matrix and hence
2 2

Q=Qt =Q-l. Also, consider a permutation matrix PcRN ‘N as

P =

“ l o . . . o
0 0 . , . 0

00.:.0
0“ i“ ;’”: ;’ o
0 0 . . . 0

0 0 . . . 0

0 0 . . . 1
0 0 . , . 0

0 0 .:.0

P is a symmetric permutation matrix, i.e., P = Pt, and hence PP = IN2,

Theorem 2. The matrix JfL2 has an eigenvalue-eigenvector decomposition as

(16) Jtt L2 = QPQA2QPQ

where A ~ Diag{A ~i , }CF?2XN2, iand J=l, 2, N.with2

11

. *

, ‘(17) A 4- 2cos(in/N+l)2iJ = - 2cos(jn/N+l)

Proof. From Theorem 1, the matrix ~L2 can be expressed as

(18) M = Tridiag[-IN, QA~Q, -IN] = QA2Q
L2

2 2
where A2cRN ‘u iS a block tridiagonal matrix as AZ = Tridiag[-IN, A;, -INI

with A; = Diag{A~i}cRNxN, i =1, 2,. ..,N, and A;, = 2 + Ali = 4 - 2cos(iTc/N+ll.

The block elements of AZ are diagonal and hence A2 can be reduce to a block

diagonal matrix as

(19) A2 = PPA2PP = P(PA2P)P = PT2P

2 2
where T2 = Diag{T2i}cRNxN and T2~ = Tridiag[-1, A~i, -lIcRNXN,

i = 1, 2, N. From Eqs. (18)-(19), ML2 can be expressed as

(20) M
L2

= QPT2PQ

The submatrices T2~ have a symmetric tridiagonal Toeplitz structure.

Therefore, from Theorem 1 and definition of Q and T2, the eigenvalue-

eigenvector decomposition of T2 is given by

(21) T2 = QA2Q

The eigenvector-eigenvalue decomposition of matrix A(L2 in Eq. (16), is then

obtained by replacing Eq. (21) into Eq. (20).

Note that, from the definition of Q and P, it fo

is symmetric and orthonormal, i.e., f3 = et = 0-1

0

lows that the matrix EJ = QPQ

The time-parallel algorithm is derived by replacing Eq. (16) into Eq. (15)

(22) QPQ (I N2 + 6A2)QPQU(1) = QPQ(IN2 - 6A2)QPW(i-1)

Let ~(i) ~ QPQU(’) and D2 ~ (IN2 + 6A2)_1(IN2 - 6A2). Since the matrix e = Qf’Q

is orthonormal and hence nonsingular, it then follows that

(23) ~(l) = D2~(i-i) i =1,2,M

which implies that

(24)
-(i)u = [D2)i~(0) i =1, 2,M

Again, assuming that all the diagonal matrices (D2)* are precomputed, the

time-parallel algorithm is given as

12

. ,

Step I:
O(o) = QPQU(0) = ENJ(0)

Step 11. --(i)u = (D2)%(0) i =1,2,M

Step III: u (i) = QPQ~(i) = eu(i) i=l,2,M

C. Comparison of Serial, Space-Parallel, and Time-Parallel Algorithms

The computational structure of the time-parallel algorithm is shown in

Fig. lb. Again, as can be seen, the computations in Steps II and 111 are

completely decoupled. If these computations are performed in parallel then

the computation complexity of time-parallel algorithm is independent of M.

The matrix (3 = QPQ is the two-dimensional DST operator. Therefore, the

multiplication of any vector by matrix (3 in Steps I and III is tantamount to

performing a two-dimensional DST which, by using the fast techniques, can be

performed in 0(N2Log N) steps. It then follows that the complexity of serial

implementation of the time-parallel algorithm is of 0(MN2Log N). This implies

that the algorithm is asymptotically consistent, i.e., its serial

implementation is, asymptotically, as fast as the best serial algorithm for

the problem. In terms of actual number of operations, the time-parallel

algorithm is also competitive with the best serial algorithms (see Sec. VI).

For the two-dimensional problem, due to this asymptotic consistency, the

time-parallel algorithm is always efficient regardless of the parallel

implementation strategy and the number of processors employed. With M

processors, the computational cost of time-parallel is of 0(N2Log N) which

represents a linear speedup of O(M) over the best serial algorithm. By using

O(MN2) processors, i.e., a two-level parallel implementation, parallelism in

both time and space can be fully exploited. In this case, the computations in

Steps I and 111 can be performed in O(Log N)- since a two-dimensional DST

consists of two steps wherein at each step N decoupled one-dimensional DST’S

are computed- and the computation in Step 11 can be computed in O(l). This

leads to a computational cost of O(Log N) for both time- and space-parallel

13

< *

algorithm. Compared with the best space-parallel algorithm, this represents a

relative speedup of O(M) at a cost of an increase of O(M) in the number of

processors which indicates a very high processors utilization factor,

IV. Three-Dimensional Parabolic Equation

A. Statement of Problem and Crank-Nicholson Method

For the three-dimensional case, we consider the parabolic equ~tion in a

unit cube domain as

X,Y,ZCQ and T>t>Oy . ~2@J + a2u a%,—+—
at ax 2 ay2 a22

with boundary and initial

U(t,x,y,z) = g(x,y,z)

U(o,x,y,z) = f(x,y,z)

conditions as

X,y, zcn’ and T>t>O

x, y, Zcn

Superimposing a uniform grid on $1 (Ax = Ay =

7-point finite difference approximation, the

Az = h) and using the usual

C-N method is given by

(25) (I N3 + 6ML3)U(1) = (IN3 - M3)U(1-1)

where, as before, h = l/(N+l) and ~ = a2~/2h2. I ~~ is the N3xN3 unit matrix,

M = Tridiag[-IN2, B, -IN2]cRN3XN3 is the block tridiagonal matrix arisingL3

from the discretization of three-dimensional Laplace
2 2

B = Tridiag[-IN, A’, IN]cRNXN is a block tridiagonal

A’ = Tridiag[-1, 6, -l]cRNXN.

operator, and

matrix with

Again, the modified C-N method given by Eq. (6)-(7) is more efficient than

the

Eq .

direct solution of Eq. (25). For this case, the coefficient matrix in

(6) has a structure similar to M which is the matrix arising in solutionL3

of the three-dimensional Poisson Equation (see for example [29]). Therefore,

the fast Poisson Solvers for the three-dimensional problem can be used for

direct solution of Eq. (6).

The extension of the CR and MD algorithms to the solution of three-

dimensional Poisson Equation has been reported in [29,30,31]. The analysis in

[30] indicates that the CR and MD algorithms have a serial computational

14

● ☛

complexity of 0(N3Log2N) and O(N3Log N), respectively. There seems to be no

report on the extension of the FA algorithm. However, it is rather

straightforward to show that the algorithm can be extended to the solution of

three-dimensional problem with a computational complexity of O(N3Log N). Note

that, for the three-dimensional problem, both the MD and FA algorithms

faster than the CR algorithm.

There are very few reports on parallel computation of fast Poisson

are

Solvers

for the three-dimensional case. Sameh [291 and Sweet et al [31] have studied

parallel computation of the MD algorithm. Both works are concerned with some

specific parallel implementation of the algorithm wherein limited parallelism

is exploited. However, based on the analyses in [29,311, it is straightforward

to show that, by using O(N3) processors, the time lower bound of O(Log N) can

be achieved in parallel computation of the MD algorithm. It can also be shown

that the same bounds on time and processors are achievable in parallel

computation of the FA algorithm, However, the analysis of parallelism in

computation of the CR algorithm seems to be less straightforward. In fact,

a first step, the extension of the works in [26,271 to the three-dimensionai

case needs to be studied, Therefore, only parallel variants of the MD and FA

algorithms are considered here, We can conclude that, by using 0(N3)

processors and parallel variant of either the MD or FA algorithms, each

solution of Eq. (6) can be computed in O(Log N) while the vector addition in

Eq, (7) can be done in O(l). This leads to a complexity of O(MLog N) for

space-parallel solution of the problem which, again, indicates that the

computation is fully parallelized in space but is strictly serial in time.

B. Time-Parallel Algorithm

The time-parallel algorithm for three-dimensional case is also based on

the derivation of the eigenvalue-eigenvector decomposition of matrix flL3. To

this end, let us first consider two matrices Q and @ as

15

Q~
N3xN3 A 33

Diag[Q, (?, Q, QIcR and 0 = Diag[(3, 8 9, 13]CRN ‘N

From their definition, it follows that Q and 9 are symmetric orthonormal

matrices, i.e., Q = Qt = Q-l and Q = @t = Q-l. Also, consider a permutation
3 3

matrix 3%RN ‘N that has a structure similar to P but each of its block has N

rows and N2 columns. Note that, unlike P, the matrix P is not symmetric. But

3?Pt = P% = I since T is a permutation matrix.N3

Theorem 3. The matrix fl~~ has an eigenvector-eigenvalue decomposition as

(26) M = 0PtQA3Q3’@L3

Awhere A = Diag{A3 3i,k}c~Jx7’ 1, j, andk=l,N. with

(27) A = 6 - 2cos(in/N+l)
31Jk

- 2cos(jn/N+l) - 2cos(kn/N+l)

Proof. From Theorem 2, the matrix flL3 can be expressed as

(28) M = Tridiag[-IN2, f3A;8, -IN2] = @A3t3L3
3 3

where A’ = 21 + AZ and A3cRN ‘N is a block tridiagonal matrix as
2 N2

A3 = Tridiag[-IN2, A;, -IN21. The block elements of A3 are diagonal and hence

A3 can be reduced to a block diagonal matrix as

(29) A3 = P%’A33% = @(PA33’t)3’ = @T3P

where T3 ~ Diag{T31j}cRN3xN3, iandj=l, 2, ,.., N, and

T = Tridiag[-1, A’31 J -lICRNXN.21j’ From Eqs. (28)-(29), M L3 is expressed as

(30) M = G@T3PEI
L3

The tridiagonal matrices T
31 j are symmetric and Toeplitz. Therefore, from

Theorem 1 and definition of Q and T3, the eigenvalue-eigenvector decomposition

of T3 is given by

(31) T3 = QA3Q

The eigenvector-eigenvalue decomposition of matrix ML3 in Eq. (26), is then

obtained by replacing Eq, (31) into Eq. (30). ❑

Note that, the matrix O = QP@ is not symmetric but it is orthogonal since

‘$@t = (Q7V3)(#Q) = I
N3

The time-parallel algorithm is derived by replacing Eq. (26) into Eq. (25)

16

(3 2) Q#Q(IN3 + 6A3)Q9X3U(!) = W’tQ(IN3 - 3A3)Q?’W(L-1)

Let 0(’) ~ QW3U(i) and D, ~ (I,, + ~A3)-’(IN3 - 5A,). Multiplying both sides

of Eq. (32) by the nonsingular matrix O = Q3’@ gives

(33) --(i)u = D3~(i-1)

which implies that

(34)
.’(i)
u = (D3)i~(0)

Again, assuming that all the diagonal matrices (D3)1 are precomputedt the

time-parallel algorithm is given as

Step 1: - (o)u = Q?’GU(o) = WJ(0)

Step II: ~(l)
= (D3)i~(0) i =1,2,M

Step III: u(i) = @Q~(i) = ~t~(i) i =1,2, ,,,,M

C. Comparison of Serial, Space-Parallel, and Time-Parallel Algorithms

The computational structure of the time-parallel algorithm is shown in

Fig. lc. Again, the computations in Steps II and 111 are completely decoupled.

If these computations are performed in parallel then the computational

complexity of time-parallel algorithm is independent of M.

The matrices @ = @PQ and 4Jt = G7tQ are the operators for tree-dimensional

direct and inverse DST. Therefore, each matrix-vector multiplication in Steps

I and III is equivalent to performing a three-dimensional DST which, by using

the fast techniques, can be computed in 0(N3Log N) steps. It follows that the

complexity of serial implementation of the time-parallel algorithm is of

0(MN3Log N) which indicates the asymptotic consistency of the algorithm.

Interestingly, in terms of total number of operations, the time-parallel

algorithm is even more efficient than the MD and FA algorithms for serial

solution of the problem (see Sec. VI)

Due to the asymptotic consistency and also the efficiency in terms of the

total number of operations, the time-parallel algorithm for three-dimensional

case is highly efficient regardless of the parallel implementation strategy

17

f

and the number of processors employed. With M processors, the computat,iona~

cost of time-parallel algorithm is of O(N3Log N) which indicates a linear

speedup of O(M) over the best serial algorithm. By using O(MN3) processors,

i.e., a two-level. parallel implementation, parallelism in both time and space

can be fully exploited. In this case, the computations in Steps I and III can

be performed in O(Log N)- since a three-dimensional DST consists of two steps

wherein at each step N2 decoupled one-dimensional DSTS need to be computed-

and the computation in Step II can be computed in O(l). This leads to a

computational cost of O(Log N) for both tirne- and space-parallel algorithm.

Compared with the best space-parallel algorithm, this represents a relative

speedup of O(M) at a cost of an increase of O(M) in the number of processors

which indicates a very high processors utilization factor.

V. Some Extensions of Time-Parallel Algorithm

A. Explicit and Implicit Methods

Our approach can be also applied to parallelize the iterations of the

explicit and implicit methods by simply replacing the eigenvalue-eigenvector

decomposition of appropriate matrix AL in Eqs, (2) and (3), The resulting

time-parallel algorithms will have exactly the same computational structure

and cost as those for the C-N method with the only exception that the diagonal

matrices D,$ J = 1, 2, 3, will be different.

B. Neumann Boundary Condition

A frequently arising type of boundary condition in solution of parabolic

PDEs is the Neumann type wherein the normal derivative, tW/th, is specified on

the boundary, In order to develop time-parallel algorithms for solution of the

problem with Neumann boundary condition, let us consider the two-dimensional

problem of Sec. 111. With the Neumann boundary condition, the discretization

of two-dimensional Laplace operator results in a block tridiagonal matrix

ML2CRN2’N2 as [231

18

4

ML2 =

i -21N

-IN ~ -IN

L -I N ~ -I N

-21N ~

with the submatrix ~CIRNxN given as

1 I
4 -2

1 4 -1
i=”.”.”.

-1 “4 “-1

-2 4

The time-parallel algorithm is derived by developing the eigenvalue-

eigenvector decomposition of matrices ~ and ML2 as follows.

Theorem 4. The eigenvalue-eigenvector decomposition of a tridiagonal matrix

i=

a 2b

b a b

1“ b “a “b

2b a

is given as

(35) ? ““”= QAQ-l

“ 4 Row{~(i)}~~NxN, iwhere the matrix Q =0, 1, N-1, is the set of

eigenvectors of matrix ~ with ~(i) = Col{cos(ijn/N-l)}cRN, j = O, 1, N-1,

being the ith eigenvector. The diagonal matrix A‘ ~ Diag{A1}cRNxN is the set of

eigenvalues of matrix ~ with ii = a + 2bcos(in/N-1) being the ith eigenvalue.

Proof. First, consider a specific matrix ~’ for which a = 2 and b = -1. For
,.

matrix T’, Van Loan [21, p,252] has shown that the eigenvectors are given by

matrix a and the elgenvalues by a diagonal matrix ~’ = Diag{~~}cRNxN where

i;=2- 2cos(in/N-1) i =0, 1, N-1

The result of [211 can be easily generalized by noting that any matrix ~ can

be written in terms of ~’ as

19

(36) += (a + 2b)I ~ -b~’ = d((a + 2b)I ~ -b~$)~-i

which implies that

i= (a + 2b)I -b~’+~i=(a+2b)-b~’N i
= a + 2bcos(i~/N-1) ~

The eigenvalues of submatrix ~, for which a = 4 a n d b = -1, are then given as

(37) ii = Diag{~li} with ~li = 4 - 2cos(in/N-1) i =0, 1,N-l

The eigenvalue-eigenvector decomposition of matrix ML2 is deri~ed in a

similar way as that of ML2 and by using the result of Theorem 4.

Theorem 5. The eigenvalue-eigenvector decomposition of matrix ML2 is given as

(38) ML2 = GPq-~Pij-~

‘ ~ Diag[6, 6,where Q ~, ~1 ~RN2xN2 and ~2 ~ Diag{~2~j}cRN2xN2, for i and

J = O, 1, ..,, N-1, with

(39) i =4 - 2cos(in/N-1)
21J - 2cos(jn/N-1)

Proof. From Theorem 4 and Eq. (37), ML2 is written as ,

(40)
.

where A2 is a block tridiagonal matrix given as

i2 =

Al -21N

-I N ~1 -IN

. . .

The block elements of ~2 are diagonal and hence ~z can be reduce to a block

diagonal matrix as

(41) i2 = PPi2PP = P(Pi2P)P = P?2P

where ~ = Diag{~2i}cRN2xN22 and ?2,c!RNXN is a tridiagonal matrix with a

structure similar to ~ for which a = ~ and b =Ii -1, From Theorem 4, the

eigenvalue-eigenvector decomposition of ?2 is given by

(42)

The eigenvalue-eigenvector decomposition of matrix ~L2 in Eq. (38) follows by

substituting Eqs. (42) and (41) into Eq. (4o), o

20

Note that the matrix 6 is not orthogonal. However, as shown in [21], ~

and ~-1 can be expressed as

(43) 6 = CS and b-i = (2/N-l)S-lC

where C is the one-dimensional Discrete Cosine Transform (DCT) operator and S

is a diagonal scaling matrix as S = [2, 1, 1, 2]. Let us define

i; = (4~2)/(N-1)2, !+’= Diag[S, S, S1, $’-1 = Diag{S-i, S-l, S-ll, and

C = Diag[C, C, ,.., Cl. Equation (38) can be then written as

(44) kL2 = cY’Pc!fi;Y’-lcPY-lc = c$’Pci;cPY’-lc

Similar to the two-dimensional case with Dirichlet boundary condition, the

time-parallel algorithm is derived by replacing the expression of matrix ~L2,

given by Eq. (44), into Eq. (15).

The matrices * = C!fPC and ~-1 = CP!t’-*C do not represent the operators for

the direct and inverse two-dimensional DCT. However, multiplication of any

vector by matrix C corresponds to performing N DCTS of size N which, by using

the fast techniques, can computed in a time of 0(N2Log N). Note that, since

the matrices S and S-l are diagonal, the time-parallel algorithm for Neuman’

boundary condition have a same decoupled structure as that of Section III.

For one-dimensional case the derivation of the time-parallel simply

follows from Theorem 4. Also, for three-dimensional case, the derivation of

time-parallel algorithm is straightforward and can be carried out in a similar

fashion as that in Section IV.

C. Higher-Order Finite-Difference Schemes

The time-parallel algorithms can be also extended to the solution of

problem while using higher-order finite-difference schemes. To this end, let

us consider the two-dimensional problem of Section 111. The five-point finite-

difference scheme has a second-order accuracy, i.e., 0(h2). However, if the

problem is discretized by using a nine-point finite difference scheme then a

fourth-order accuracy, i.e., O(h4), can be achieved. The discretization of

21

two-dimensional Laplace operator by using a nine-point finite difference

scheme results in a block tridiagonal matrix %~z as [231
“2XN2

AL2 = Tridiag[E, D, EIcR with D = Tridiag[-4, 20, -4]clRNxN and

E = Tridiag[-1, -4, -lIcRNXN. From Theorem 1, it follows that

a) The submatrices D and E have a common set of eigenvectors given by Q, and

b) The eigenvalues of submatrices D and E are given as

AD = Diag{A~}cRNxN with A; = 20 - 8cos(in/N+l), i = 1, 2, N

A; = Diag{A~}cRNxN with A: = -4 - 2cos(i?r/N+l), i = 1, 2, .,,, N.

Theorem 6. The matrix ~L2 has an eigenvalue-eigenvector decomposition as

(45) AL2 = QPQi2QPQ

where ~ = Diag{~ ~i , }CRN2’N2,2 iandj=l,2, ... ,N,with

(46) x =20- 16cos(i7r/N+l) - 4cos(iTc/N+l)cos(jn/N+l)21J

Proof. By using the eigenvalue-eigenvector decomposition of submatrices C and

D, the matrix fiL2 can be written as

(47) AL2 = Tridiag[QAEQ, QADQ, QAEQI = Q~2Q

2 2
A = Tridiag[AE, AD, AEICRN ‘N is a block tridiagonal matrix whose block2

elements are diagonal and hence it can be reduce to a block diagonal matrix as

(48) X2 = PPii2PP = P(PX2P)P = PT2P

where ? = Diag{?2,}, i = 1, N, and ~2i = Tridiag [A:, A:, A~l.. ?2~ is a2

symmetric tridiagonal Toeplitz matrix whose eigenvalues are given as

A(?21) = A; + 2Afcos(jn/N+l)

=20- 16cos(ilr/N+l) - 4cos(iTc/N+l)cos(jn/N+l) J = 1, 2, N

The eigenvalue-eigenvector

(49) 72 = Qi2Q

The eigenvector-eigenvalue

obtained by replacing Eqs.

decomposition of ~z is given as

decomposition of matrix ~L2 in Eq. (45) is then

(49) and (48) into Eq. (47). D

The time-parallel algorithm is derived by substituting the eigenvector-

eigenvalue decomposition of matrix fi~2 into Eq. (15).

22

. ,

. Theorem 6 indicates that the matrices ~L2 and AtL2 have a common set of

eigenvectors but different sets of eigenvalues. Therefore, the computational

structure and cost of the time-parallel algorithm for nine-point scheme are

exactly the same as those for five-point scheme. This implies that a higher

accuracy in space discretization can be achieved with no additional

computation or communication cost.

VI. Some Issues in Practical Implementation of Time-Parallel Algorithms

A. On-line Computation of Diagonal Matrices (Dj)~

In discussing the time-parallel algorithms in previous sections, it was

assumed that the diagonal matrices (DJ)’, i = 1, M, and j = 1, 2, 3 (J

indicates the dimension of problem) can be precomputed. This assumption holds

for cases wherein a same problem is solved many times with different initial

and/or boundary conditions. For such cases, all (D,)l can be precomputed since

they are only function of problem size and time and space discretization

parameters. Here, we consider the case wherein the problem is solved once and

hence the cost of computing (D,)l needs to be included in the overall cost.
>

To begin, note that, the computation of (DJ)l

I are completely decoupled and can be performed in

processors, the parallel computation of (Dj)i from

and the vector ~(o) in

parallel. Using O(MNJ)

the set of FOHLRS

Step

(50) (Dj)l = Dj(Dj)l-l i =1,2, .,.,M

can be performed in O(Log M) steps [19]

~(o) takes O(Log N) steps. If these two

then the overall cost of computing ~(o)

while the computation of the vector

computations are performed in parallel

and (D,)i is max(O(Log N), O(Log M)).
J

Since with O(MNJ) processors the computations in Steps II and III can be

performed in O(Log N) steps, it then follows that the overall computational

complexity of time-parallel algorithms is of max(O(Log N),O(Log M)) + (Log N),

that is, of O(Log N) + O(Log M) for M>N, and of O(Log N) for M<N.

For practical implementation, the parallel computation of (Dj)i can be

23

● 4

performed with no communication so that the highly decoupled structure of the

algorithms is preserved. To

time-parallel algorithms by

of processors, say Group i,

this end, consider the parallel implementation of

using M groups of processors. Note that any group

needs only to compute (D,)l and not all the
.

intermediate powers of Dj. In this case, each group of processors computes the

FOHLR in Eq. (50) in a different fashion as follows.

a) For i = 2n, the computation of Eq. (50) is performed as

(51)
‘DJ)~ = [(D~)~-1)2 k=12) “’ ‘og;

with a serial computational cost of 0(Log2i).

b) For i * 2“ but 2n>i>2n-1, we can write i as

n - 1

(521 i =
I ak2k
k=O

where a =Oorl. Note that, Eq. (52k
describes the binary representation of

i which is based on the fact that any integer i, 2n>i>2n-1, can be represented

by n bits, For this case, first all (Dj)2k, k = 1, 2, (n-l), are computed

from Eq. (51) in O(n-1) steps and then (DJ)l is computed as

(53) (Dj)l = &)(Dj)2k
k

Note that, in the above product only those (Dj)2 for which ak

= 1 need to be

included. For the worst case, i.e., where all ak = 1, Eq. (53) involves the

multiplication of n terms and hence its serial computation can be done in

O(n-1) or 0(lLog2i]) steps. (Lxj indicates the greatest integer smaller than

or equal to x.) The overall computation cost is determined by that of

computation of (Dj)~ which for the worst case, i.e., M = 2m - 1, is of

0(2LLog2M]) where LLog2M] = m.

Compared with the direct parallel computation of the FOHLR in Eq. (50),

the computation cost is at most increased by a factor of about two. However,

this scheme does not require any communication among groups of processors and

hence the decoupled structure of the overall computation is preserved.

24

4 ●

B. Performance of M-Parallel Coarse-Grain Implementation

Our discussions in previous sections have been mainly concerned with the

asymptotic performance of time-parallel algorithms. Here, we briefly discuss

the coarse-grain .implementation of the algorithms on massively parallel MIMD

architectures and analyze the expected performance. In this discussion, only

two- and three-dimensional problems are considered.

At this point, we need to draw a conclusion regarding the relative serial

efficiency of the CR, MD, and FA algorithms. This conclusion forms the basis

for the choice of optimal serial algorithm which 1s needed for analyzing the

performance of the time-parallel algorithms, For two-dimensional case, the CR

algorithm is faster than both the MD and FA algorithms due to a smaller

coefficient of N2Log N-dependent terms [321. However, one major drawback of

the CR algorithm is that its application is restricted by the size of problem,

N. Sweet [331 has generalized the CR algorithm for the arbitrary problem size

though with a slightly reduced efficiency. For three-dimensional case, as

discussed before, the CR algorithm is less efficient than the MD and FA

algorithms. It can be also shown that, for both two- and three-dimensional

cases, the MD algorithm is faster than the FA algorithm by about a factor of

two. Therefore, for both two- and three-dimensional cases, we consider the MD

algorithm as the fastest serial algorithm for solution of Eq. (6).

From the above discussion, it follows that a fast alternative for serial

solution of the problem is to use the modified C-N method, given by Eqs. (6)-

(7), along with the MD algorithm for solution of the linear system in Eq. (6).

Using this alternative, it can then be shown that the cost of serial solution

of problem, denoted as Tsl, is given by

(54) T = NNJ-i(2(j-I)FST + TDS + VA)
S1

where FST, TDS, and VA denote, respectively, the cost of one-dimensional fast

sine transform of size N, tridiagonal system solution with NxN symmetric

Toeplitz coefficient matrix, and addition of two Nxl vectors. The cost of

25

4

serial implementation of time-parallel algorithms, denoted as T~z, is given by

= NJ-l((M+l)(jFST + DMV) - DMV)(55) TS2

where DMV denotes the cost of multiplication of an NxN diagonal matrix by an

Nxl vector, As can be seen, T~2>Tsl for j = 2 but Ts2<Tsl for j = 3. This

implies that the time-parallel algorithm is the most efficient even for serial

solution of three-dimensional problems.

Now consider the M-parallel implementation of time-parallel algorithms

wherein the computation of ~(i) (1)and U is assigned to the lth processor.

Assuming that Step I is performed in a serial fashion but the computations in

Steps II and III are performed in parallel, the computation cost of this

M-parallel implementation strategy, THP, is obtained as

(56) T = NJ-1(2jFST + DMV)UP

The speedup of M-parallel implementation, SP~P, is then given by

SP~p = Tsl/T~p = M(2FST + TDS + VA)/(4FST + DMV) J2=

SPHP = Ts2/TMP = ((M+1)(3FST + DMV) - DMV)/(6FST + DMV) j = 3

Since TDS, VA, and DMV are of O(N) while FST is of O(NLog N), SPHP can be

approximated as

(57) SPHP = M/2 J2=

(58) SPHP = (M+l)/2 J3=

However, the performance of this M-parallel implementation strategy should

be also judged by taking into account the communication and synchronization

overhead. In fact, this strategy corresponds to a straightforward mapping of

the Figs. lb and lC and, as can be seen, the only communication activity

involved is the broadcasting of vector ~(o) to all processors. It also

represents a highly coarse-grain parallel computation strategy in which each

processor performs a series of computations in Steps 11 and 111 with a total

cost, of N~-l(jFST + DMV) asynchronously and without any need to communicate

with other

grain size

processors. The simple communication structure and highly coarse-

make the M-parallel implementation strategy very efficient for

26

,, .

massively parallel MIMD architectures. In particular, it is highly suitable

for a new class of emerging MIMD archi tectures , represented by the Inte l ’ s

Touchstone Delta and Paragon, which provide a large number of powerful

processors but a.rather simple and limited communication structure) i“e.~ a

mesh communication structure [34].

The above strategy, while being the simplest and most straightforward, is

not the most efficient since it is based on the assumption that, though M

processors are available, the computation of Step I is done in a serial

fashion. However, the computation of Step I corresponds to performing a two-

or three-dimensional DST and as such it offers a high degree of parallelism

which can be exploited to increase the overall speedup (see [35] or many

references given in [211). This can be better seen by reexamining the

computations involved in Step I in more detail. For J = 2, the computation in

Step I corresponds to performing a two-dimensional DST as

a. 0 = QU(0)

b. ~(o) = PO

c. u(o) = QLJO)

The N one-dimensional FSTS in Substeps a and c are completely decoupled and

can be performed in parallel while Substep c involves a global communication.

For j = 3, the computation in Step I

dimensional DST as

a. il = w(o)

co (j(o) = Q~ (o)

In Substep a, N two-dimensional FSTS

even higher degree of parallelism

dimensional FSTS can be performed

involves a global communication.

Let us assume that a speedup

in

in

of

corresponds to performing a three-

can be computed in parallel. There is an

computation of Substep c since N2 one-

parallel. However, Substep b again

K is achieved in the computation of Step

27

, .

1, THP and SPHP are then given by

j-l(jFST/K + JFST + DMV)(59) TW=N

(60) SPHP = M/(1 + l/K) = MK/K+l J2=

(61) SPHP = (M+l)/(1 + I/K) = (M+l)K/K+l J = 3

Interestingly, Eqs. (60)-(61) suggest that even a limited speedup in computing

Step I will result in a rather significant increase in the

SPMP , For example, a speedup of K = 3 will result in a 25%

For large K, say K>1O, SPHP will be very close to M, which

overall speedup,

increase in SPHP.

indicates a linear

speedup in the computation. For large problems, i.e. , large N or J = s, such a

speedup in the computation of Step I seems to be easily achievable even on

parallel architectures with simple communication structures.

The above analysis indicates that, under realistic assumptions, the

M-parallel implementation of time-parallel algorithms on the MIMD

architectures can result in a speedup close to the linear one. The minimum

communication and synchronization requirements of the time-parallel algorithms

also suggests that with any number of processors smaller than M it is more

efficient to exploit parallelism in time rather than in space.

C. Time- and Space-Parallel Implementation

Many emerging MIMD parallel architectures, e.g., Intel’s iPSC/860,

Touchstone Delta, and Paragon, use powerful vector processors such as Intel

~860 as the node processor. Another advantage of the time-parallel algorithms

for implementation on these architectures is that the computation performed by

each processor can be efficiently vectorized to exploit the node vector

processing capability and hence increase the overall computational speed. To

see this, note that, the computation in Step 11 is already in a form highly

suitable for vector computation. Many algorithms have been developed for

efficient vector computation of fast transforms (see for example [36] or the

references in [21]). An even greater efficiency in vector computation of Steps

28

I and III can be achieved by noting that each processor has to perform a

series of decoupled FSTS. Therefore, the computation can be organized in a way

to further increase the efficiency for vectorization [35,36].

With a number.of processors greater than M further speedup can be achieved

by exploiting space-parallelism in computing Steps II-III. Again, note that,

parallel computation of Step II is straightforward. Exploitation of -space-

parallelism in computing Step III corresponds to parallel computation of two-

or three-dimensional DST which was discussed above.

VII. Discussion and Conclusion

In this paper, we developed time-parallel algorithms for solution of a

class of parabolic PDEs defined by Eq. (l). The basic idea in our approach is

to use a transformation based on the eigenvalue-eigenvector decomposition to

diagonalize the matrices involved in the time-stepping iterations given by

Eqs. (3)-(5). This diagonalization results in a decoupling of the iterations

which in turn allows the solution for all the time steps to be computed in

parallel. The time-parallel algorithms achieve maximum parallelism in time

since their complexity is either of O(Log M) or is independent of M

The time-parallel algorithms for one-, two-, and three-dimensional cases

have a similar structure for parallel computation. However, they differ in

their efficiency for serial computation. The time-parallel algorithm for one-

dimensional case is highly inefficient for serial computation, while the one

for three-dimensional case seems to be the most efficient for serial

computation. This implies an optimal efficiency for parallel computation for

three-dimensional case since the algorithm not only provides a high degree of

parallelism but it does so by also reducing the total number of operations.

We also developed time-parallel algorithms for solution of problem with

Neumann boundary condition as well as by using higher-order finite-difference

schemes, For the latter case, it was shown that a higher accuracy in space

29

().

discretlzation can be achieved with no additional computation or communication,

cost. If a large number of processors are available then a higher accuracy in

time discretization can be also achieved by reducing the time step size At

(and hence increasing M) with a small increase in the computational cost. Note

that, with a sufficient number of processors,’ the computation of step III is

independent of M while that of Step II, for the worst case, may be increased

by O(Log M).

Our results clearly show that, unlike the general assumption, the time-

stepping iterations for the class of problems defined by Eq. (1) can be fully

parallelized in time. However, the time-parallel computing approach can be

also applied to a wider class of problems, The extension of time-parallel

algorithms to the solution of linear inhomogeneous parabolic PDEs with

constant and variable coefficients is presented in [37]. The generalization of

time-parallel computation approach for solution of a more general class of

evolutionary PDEs, including both parabolic and hyperbolic PDEs, on irregular

domains is reported in [381.

ACKNOWLElX3iENT

The research described in this paper was performed at the Jet Propulsion
Laboratory, Ca~ifornia Institute of Technology, under contract with the
National Aeronautics and Space Administration (NASA). I am highly indebted to
my colleagues Drs. J. Barhen and N. Toomarian for many insightful discussions,
suggestions, and encouragement.

REFERENCES

[11 R. S. Varga, Matrix Iterative Ana~ysis, Prentice-Hall, NJ, 1962.

[2] P. N, Swarztrauber and R, A, Sweet, “Efficient Subroutines for the

Solution of General Elliptic and Parabolic Partial Differential

Equations, ” Atmospheric Technology, pp. 79-81, Sept. 1973,

[3] J.M. Ortega and R.G. Voigt, Solution of Partial Differential Equations on

Vector and Parallel Computers, SIAM Pub., 1984.

[4] E. Gallopoulos and Y. Saad, ”On the Parallel Solution of Parabolic

Equations, ” Proc. ACM Int. Conf. on Supercomputing, pp. 17-28, June 1989,

[5] S. M. Serbin, ”A Scheme for Parallelizing Certain Algorithms for the

Linear Inhomogeneous Heat equation, ” SIAM J, Sci, Stat. Comput. ,

30

> ,,-

[61

[71

[81

[91

[101

[111

[121

[131

[141

[151

[161

[171

[181

[191

[20]

[211

[221

Vol. 13(2), pp. 449-458, March 1992.

G. Rodrigue, “A Parallel First-Order Method for Parabolic Partial

Differential equations, ” in High-Speed Computation, J, S. Kowalik (Ed.),

pp. 329-342, Springer-verlag, 1984.

G. Rodrigue and D, Wolitzer, “Preconditioned Time-Differencing for the

Parallel Solution of the Heat Equation, ’’Proc. 4th SIAM Conf, on Parallel

Processing, pp. 268-272, 1990.

D. J. Evans, ’’Alternating Group Explicit Methods for the Diffusion

Equation, ” Appl. Math. Modelling, Vol. 9, pp. 201-206, 1985.

E. Lelarasmee, A. Ruheli, and A. L. Sangiovanni-Vincentelli, ’’The Waveform

Relaxation Method for the Time Domain Analysis of Large Scale Integrated

Circuits, ” IEEE Trans. Computer-Aided Design, Vol. 1, pp. 131-145, 1982,

J, H. Saltz and V. K, Nail, ’’Towards Developing Robust Algorithms for

Solving Partial Differential Equations on MIMD Machines, ” Parallel

Computing, Vol. 6, pp. 19-44, 1988.

D. E. Womble, ”A Time-Stepping Algorithm for Parallel Computers, ” SIAM J.

Sci. Stat. Comput, , Vol. 11(5), pp. 824-837, 1990.

W. Hackbusch, ’’Parabolic Multigrid Methods, ” Proc. 6th Int. Symp. on

Computing Methods in Applied Sciences and Engineering, Dec. 1983.

G. Horton and R. Knirsch, ”A Time-Parallel Multigrid-Extrapolation Method

for Parabolic Partial Differential Equations, ” Parallel Computing,

vol. 18, pp. 21-29, 1992.

G, Strang and G. J. Fix, An Analysis of the Finite Element Method,

Prentice-Hall, Englewood Cliffs, NJ, 1973.

A. Fijany,’’Time Parallel Algorithms for Solution of Linear Parabolic

PDEs , “ Jet Propulsion Lab. Eng, Memorandum, EM 347-93-002, Feb. 1993.

G. Smith, Numerical Solution of Partial Differential Equations. Clarendon

Press, Oxford, 1985.

R.F. Boisvert, ’’Algorithms for Special Tridiagonal Systems, ” SIAM J. Sci.

Stat. Comput. , Vol. 12(2), pp. 423-442, March 1991.

A. H. Sameh, S. C. Chen, and D. J. Kuck,’’Parallel Poisson and Biharmonic

Solvers, ” Computing, Vol. 17, pp. 219-230, 1976.

R. Hockney and C. Jesshope, ParaJleJ Computers. Adam Hilger Ltd., 1981.

S. Barnett, Matrices; Methods and Applications. Clarendon Press, 1990,

C. Van Loan, Computational frameworks for the Fast Fourier Transform,

SIAM, Philadelphia 1992.

0. Buneman, ”A Compact Non-Iterative Poisson Solver, ” Rep. 249, Stanford

University Institute for Plasma Research, Stanford, California, 1969.

31

* ID*

, [23] B. Buzbee, G. Golub, and C. Nielson, ”On Direct Methods for Solving

Poisson Equations, ” SIAM J. Numer. Anal., Vol. 7, pp. 627-656, 1970,

[241 B. Buzbee, ”A Fast Poisson Solver Amenable to Parallel Computation, ” IEEE

Trans. Computers, Vol. C-22, pp. 793-796, 1973.

[25] R. Hockney, ”A Fast Direct Solution of Poisson’s Equation Using Fourier

Analysis, ” J. ACM, Vol. 12, pp. 95-113, 1965.

[26] R. Sweet, ”A Parallel and Vector Variant of the Cyclic Reduction

Algorithm, ” SIAM J, Stat, Sci. Comput. , Vol. 9, pp. 761-765, 1988.

[271 E. Gallopoulos and Y. Saad,”A Parallel Block Cyclic Reduction Algorithm

for the Fast Solution of Elliptic Equations, ” Parallel Computing,

vol. 10, pp. 143-159, 1989.

[281 P. Swarztrauber and R. Sweet, “Vector and Parallel methods for the Direct

Solution of Poisson’s Equation, ” J. Computional & Applied Math., Vol. 27,

pp. 241-263, 1989.

[29] A. Sameh, ”A fast Poisson solver for multiprocessors, ” Elliptic Problem

Solvers 11, G, Birkhoff and A. Schoenstadt (Eds.), Academic Press, 1984.

[30] R. Wilhelmson and J. Ericksen, “Direct Solution for Poisson’s Equation

in Three Dimensions” J. Comp. Physics, Vol. 25, pp. 319-331, 1977.

[31] R. Sweet, W. Briggs, S. Olivera, J. Porsche, and T. Turnbull,’’FFTs and

Three-Dimensional Poisson Solvers for Hypercube, ” Parallel Computing,

vol. 17, pp. 121-131, 1991.

[321 C. Temperton, “Direct Methods for the Solution of the Discrete Posisson

Equation: Some Comparisons, ” J. Comp. Physics, Vol. 31, pp. 1-20, 1979.

[331 R. Sweet, ”A Cyclic Reduction Algorithm for Solving Block Tridiagonal

Systems of Arbitrary Dimension, ” SIAM J, Numer. Anal., Vol. 14(4),

pp. 706-720, 1977.

[34] R. Hockney and E. Carmona, “Comparison of Communications on the Intel

iPSC/860 and Touchstone Delta,” Parallel Computing, Vol. 18, pp. 1067-

1072, 1992.

[35] P. Swarztrauber, ’’Multiprocessor FFTs,” Parallel Computing, Vol. 5,

pp. 197-210, 1987.

[36] D. Bailey, ”A High Performance Fast Fourier Transform Algorithm for the

CRAY-2, ” J. of Supercomputing, Vol. 1, pp. 43-60, 1987.

[37] A. Fijany, ’’Time-Parallel Algorithms for Solution of Linear Inhomogeneous

Parabolic PDEs with Constant and Variable Coefficients, ” Submitted to

SIAM J. Sci. Stat. Comput, ,

[381 A. Fijany, ”On the Structure of Time-Parallel Algorithms for Solution of

Linear Evolutionary Partial Differential Equations, ” In preparation.

32

P*, ,*

.

‘(”)+

“(o)
~(o)

~(M)

“W)

. .

. .

. .
~(l)

- - (D, $ “(1)

. ,
, .
. .
, ●

~(l)
-U(l)

~(W
“(M)

. ●

. .

. .
~(l)

e 1> “ (1)

. .

. .

. .

. .
~(l)

“(1)

“(”)--FP

o(M)
“(M)

. .

. .
0 ●

“(o

● ✎

. .

(a)

(b)

(c)

. .

. .
~(1)

“(1)

Figure 1. Computational Structure of Time-Parallel Algorithms.
a: One-Dimensional Problem. b: Two-Dimensional problem.
c: Three-Dimensional Problem.

33

